MikroElektronika'nın RFID modülünü kullanan var mı?

Başlatan xoom, 19 Ekim 2012, 19:50:47

xoom

yok hocam pic çalışıyor bende çalışmayan tek şey kartı antene yaklaştırınca lcd de kartın ID'sini okumayı bırakın aynı zamanda basit kart yaklaştırınca filanca pindeki ledi yak diyorum yine olmuyor.. ama enerji verir vermeez başka porta ledi yakma söndürme komutu veriyorum onlar çalışıyor.. fakat kartı yaklaştırınca çalışması beklenen if(read_4102(code)) çalışmıyor ki döngü içindeki ledi bile yakamıyor..

teknikelektronikci

anladim peki dediigm yöntemi denedinizmi ? fonksioynu direk cagirmayi deneyin (if olmadan)
Ey Türk istikbalinin evlâdı! İşte, bu ahval ve şerâit içinde dahi, vazifen; Türk İstiklâl ve Cumhuriyetini kurtarmaktır! Muhtaç olduğun kudret, damarlarındaki asil kanda mevcuttur!

xoom

bişey değişeceğini zannetmiyorum ama deneyeceğim yarın.

xoom

Halen Daha yerimde saymaktayım.. bir türlü ilerleme olmadı.. nedendir bilmem if(read_4102(code)) ile yazmış olduğum döngüye program girmiyor kart yaklaştırıyorum ama sonuç değişmedi..

xoom

Diğer bölümde sordum ama bu bölümde de tekrar sormak istiyorum.. Acaba bu rfid modülün Aşağıdaki Pin tanımlamaları

#define RF_RDY_CLK   PIN_C5         // External interrupt used to read clock
#define RF_SHD       PIN_C4         // High disables the antenna signal
#define RF_MOD       PIN_C3         // High does 100% modulation
#define RF_DEMOD_OUT PIN_C2         // Data read in interrupt service routine


Bu pinler rastgele boş pinlerle değiştirebilirmiyim yoksa bazıları özellikle ccp1 Gibi pinlere mi bağlanmak gerekir bilgisi olan var mı ?




/////////////////////////////////////////////////////////////////////////
////                             em4095.c                            ////
//// This file contains drivers for a EM4095 RFID basestation.       ////
////                                                                 ////
/////////////////////////////////////////////////////////////////////////
////                                                                 ////
////                          Pin Layout                             ////
////   ------------------------------------------------------------  ////
////   |                                                          |  ////
////   | 1: VSS       GND         | 16: DC2                       |  ////
////   |                          |                               |  ////
////   | 2: RDY/CLK   RF_RDY_CLK  | 15: FCAP                      |  ////
////   |                          |                               |  ////
////   | 3: ANT1                  | 14: SHD         RF_SHD        |  ////
////   |                          |                               |  ////
////   | 4: DVDD                  | 13: DEMOD_OUT   RF_DEMOD_OUT  |  ////
////   |                          |                               |  ////
////   | 5: DVDS                  | 12: MOD         RF_MOD        |  ////
////   |                          |                               |  ////
////   | 6: ANT2                  | 11: AGND                      |  ////
////   |                          |                               |  ////
////   | 7: VDD       +5V         | 10: CDEC_IN                   |  ////
////   |                          |                               |  ////
////   | 8: DMOD_IN               |  9: CDEC_OUT                  |  ////
////   ------------------------------------------------------------  ////
////                                                                 ////
/////////////////////////////////////////////////////////////////////////
////        (C) Copyright 1996,2004 Custom Computer Services         ////
//// This source code may only be used by licensed users of the CCS  ////
//// C compiler.  This source code may only be distributed to other  ////
//// licensed users of the CCS C compiler.  No other use,            ////
//// reproduction or distribution is permitted without written       ////
//// permission.  Derivative programs created using this software    ////
//// in object code form are not restricted in any way.              ////
/////////////////////////////////////////////////////////////////////////

#ifndef EM4095
#define EM4095

#ifndef RF_SHD
#define RF_RDY_CLK   PIN_C5         // External interrupt used to read clock
#define RF_SHD       PIN_C4         // High disables the antenna signal
#define RF_MOD       PIN_C3         // High does 100% modulation
#define RF_DEMOD_OUT PIN_C2         // Data read in interrupt service routine
#endif


// Provide a buffer for storing recieved data and data to be sent
#define RFBUFFER_SIZE 20
int8 RFbuffer[RFBUFFER_SIZE];
int8 RFbuffer_index = 0;
int8 RFbuffer_bitIndex = 0;
#define END_OF_RFBUFFER (RFbuffer_index == sizeof(RFbuffer))


/////////////////////////////////////////////////////////////////////////
//// Read modes available for reading data from a transponder
/////////////////////////////////////////////////////////////////////////
int8 RF_readMode;
#define RF_MANCHESTER_DATA    0     // Reads Manchester encoded data
#define RF_MEASURE_WIDTHS     1     // Measure a series of widths
#define RF_FIND_WIDTH         2     // Find a specific width
#define RF_FIND_PATTERN       3     // Find a pattern of widths
/////////////////////////////////////////////////////////////////////////


/////////////////////////////////////////////////////////////////////////
//// Global Variables
/////////////////////////////////////////////////////////////////////////
int1  bitValue              = 1;
int1  storeData             = TRUE;
int1  RE_FE_TOGGLE          = 1;
int1  RF_widthFound         = FALSE;
int1  RF_patternFound       = FALSE;
int8  RF_widthToFind        = 0;
int8* RF_findWidths         = 0;
int8  RF_uncertainty        = 0;
int8  timer0_overflows      = 0;
int8  dataTransferred       = 0;
int16 old_clock             = 0;
/////////////////////////////////////////////////////////////////////////


// Purpose:       Initializes the 4095 into sleep mode
//                Sets up the timers and interrupts
void rf_init()
{
   output_low(RF_SHD);
   output_low(RF_MOD);

   setup_timer_1(T1_EXTERNAL | T1_DIV_BY_1);
   setup_ccp1(CCP_CAPTURE_RE);
   setup_ccp2(CCP_COMPARE_INT);

   setup_timer_0(RTCC_INTERNAL | RTCC_DIV_256);
   enable_interrupts(INT_RTCC);
   enable_interrupts(GLOBAL);
}

// Purpose:       Powers down the RF antenna
#define rf_powerDown()  output_high(RF_SHD);

// Purpose:       Powers up the RF antenna
#define rf_powerUp()    output_low(RF_SHD);


// Purpose:       Select which edge to begin reading data
void RF_readEdge(int1 edge)
{
   if(edge)
   {
      setup_ccp1(CCP_CAPTURE_RE);
      RE_FE_TOGGLE = 1;
   }
   else
   {
      setup_ccp1(CCP_CAPTURE_FE);
      RE_FE_TOGGLE = 0;
   }
}


// Purpose:       Interrupt service routine to handle compare 1 interrupts.
//                Reads incoming data from a transponder and stores it in
//                the global buffer.
#INT_CCP1
void isr_ccp1()
{
   int8  width;

   // Toggle between capturing rising and falling edges to meausure width
   if(RE_FE_TOGGLE)
   {
      setup_ccp1(CCP_CAPTURE_FE);
      RE_FE_TOGGLE = 0;
   }
   else
   {
      setup_ccp1(CCP_CAPTURE_RE);
      RE_FE_TOGGLE = 1;
   }

   // Calculate the width
   width = CCP_1 - old_clock;
   old_clock = CCP_1;

   switch(RF_readMode)
   {
      // Use to receive manchester formatted data from a transponder
      case RF_MANCHESTER_DATA:
      {
         if(width > 54)           // Check for a phase change
         {
            bitValue = ~bitValue; // Invert the save bit value
            storeData = TRUE;     // Force a bit store
         }

         if(storeData)
         {
            shift_right(RFbuffer+RFbuffer_index, 1, bitValue);
            ++dataTransferred;

            if(++RFbuffer_bitIndex == 8)
            {
               RFbuffer_bitIndex = 0;
               ++RFbuffer_index;
            }
         }

         storeData = ~storeData;
         break;
      }

      // Use to read high and low widths
      case RF_MEASURE_WIDTHS:
      {
         RFbuffer[RFbuffer_index++] = width;
         ++dataTransferred;

         break;
      }

      // Use to search for a certain pulse width
      case RF_FIND_WIDTH:
      {
         if(width > (RF_widthToFind - RF_uncertainty)
         && width < (RF_widthToFind + RF_uncertainty))
         {
            RF_widthFound = TRUE;
         }
         break;
      }

      case RF_FIND_PATTERN:
      {
         if(width > RF_findWidths[RFbuffer_index] - RF_uncertainty
         && width < RF_findWidths[RFbuffer_index] + RF_uncertainty)
         {
            if(++RFbuffer_index == dataTransferred)
            {
               RF_patternFound = TRUE;
            }
         }
         else
         {
            if(RFbuffer_index > 0)
            {
               int8 pos, i, j;
               pos = RFbuffer_index-1;   // Save the initial position

               // Try to match partial pattern
               while(--RFbuffer_index != 0)
               {
                  if(width > RF_findWidths[RFbuffer_index] - RF_uncertainty
                  && width < RF_findWidths[RFbuffer_index] + RF_uncertainty)
                  {
                     for(i=pos, j=RFbuffer_index-1; j!=255; --i, --j)
                     {
                        if(RF_findWidths[j] != RF_findWidths[i])
                        {
                           break;
                        }
                     }
                     if(j == 255)
                     {
                        break;
                     }
                  }
               }
            }
         }
         break;
      }
   }
}


// Purpose:       This interrupt service routine is used
//                to send data to a transponder
// Inputs:        None
// Outputs:       None
#INT_CCP2
void isr_ccp2()
{
   static int1 mode = 1;

   if(mode == 1 && !END_OF_RFBUFFER)
   {
      // Output high to modulate the antenna, so send a 0 with modulation pin high
      output_bit(RF_MOD, !bit_test(RFbuffer[RFbuffer_index], RFbuffer_bitIndex));

      if(++RFbuffer_bitIndex == 8)   // Increment the buffer indexes as necessary
      {
         RFbuffer_bitIndex = 0;
         ++RFbuffer_index;
      }

      CCP_2 += 30;            // Wait for half the bit period minus two RF periods
      mode = 0;               // Toggle the mode
   }
   else
   {
      output_low(RF_MOD);     // No modulation
      CCP_2 += 34;            // Wait for half the bit period plus 2 RF periods before sending another bit
      ++dataTransferred;      // Increment the bits transferred counter
      mode = 1;               // Toggle the mode
   }
}

// Purpose:       Interrupt for timer 0. Keeps track of the number of
//                overflows for timeouts.
// Inputs:        None
// Outputs:       None
#INT_RTCC
void isr_rtcc()
{
   ++timer0_overflows;
}


// Purpose:       Fill the buffer with data read from the basestation
// Inputs:        1) The number of bits to read
//                2) TRUE start on rising edge
//                   FALSE start on falling edge
// Outputs:       The number of bits read. Could be used to check for timeout
int8 RF_get(int8 numBits, int1 edge)
{
   RF_readEdge(edge);
   RF_readMode = RF_MANCHESTER_DATA;

   storeData         = TRUE;
   bitValue          = 0;
   RFbuffer_index    = 0;
   RFbuffer_bitIndex = 0;
   dataTransferred   = 0;
   timer0_overflows  = 0;
   old_clock         = 0;
   set_timer1(0);

   clear_interrupt(INT_CCP1);
   enable_interrupts(INT_CCP1);
   while(dataTransferred < numBits && timer0_overflows < 15);
   disable_interrupts(INT_CCP1);

   RFbuffer_index = 0;
   RFbuffer_bitIndex = 0;

   return dataTransferred;
}


// Purpose:       Send data from the buffer to the transponder
// Inputs:        1) Send numBits of data to the transponder
//                2) The index in the buffer to start at
//                3) The bit position at the index to start at
// Outputs:       None
void RF_send(int8 numBits, int8 index, int8 bitPosition)
{
   RFbuffer_index    = index;
   RFbuffer_bitIndex = bitPosition;
   dataTransferred   = 0;
   CCP_2             = 3;  //
   set_timer1(0);          // Cause an interrupt imediately

   enable_interrupts(INT_CCP2);
   while(dataTransferred < numBits);
   disable_interrupts(INT_CCP2);
}


// Purpose:       Search for a certain pulse width
// Inputs:        1) The width length in clocks
//                2) Uncertainty to search over a range
//                3) TRUE start on rising edge
//                   FALSE start on falling edge
//                ex) numClocks = 128; uncertainty = 6; range = 122 to 134
// Outputs:       TRUE if width was found, FALSE if not found
int1 RF_findWidth(int8 numClocks, int8 uncertainty, int1 edge)
{
   RF_readEdge(edge);

   RF_readMode          = RF_FIND_WIDTH;
   RF_widthToFind       = numClocks;
   RF_widthFound        = FALSE;
   RF_uncertainty       = uncertainty;
   timer0_overflows     = 0;
   old_clock            = 0;
   set_timer1(0);

   clear_interrupt(INT_CCP1);
   enable_interrupts(INT_CCP1);
   while(RF_widthFound == FALSE && timer0_overflows < 50);
   disable_interrupts(INT_CCP1);

   return RF_widthFound;
}


// Purpose:    Measure a number of pulse widths, both high and low
// Inputs:     1) The number of widths to measure
//             2) TRUE start on rising edge
//                FALSE start on falling edge
// Outputs:    The number of widths that were measured. If there is
//             no transponder in range, the timeout could occur.
int8 RF_measureWidths(int8 numWidths, int1 edge)
{
   RF_readEdge(edge);

   RF_readMode       = RF_MEASURE_WIDTHS;
   dataTransferred   = 0;
   RFbuffer_index    = 0;
   timer0_overflows  = 0;
   old_clock         = 0;
   set_timer1(0);

   clear_interrupt(INT_CCP1);
   enable_interrupts(INT_CCP1);
   while(dataTransferred < numWidths && timer0_overflows < 50);
   disable_interrupts(INT_CCP1);

   return dataTransferred;
}

// Purpose:    Measure a number of pulse widths, both high and low
// Inputs:     1) A pointer to an array of widths. It is safe to use RFbuffer.
//             2) The number of widths in the pattern
//             3) Uncertainty to search over a range
//             4) TRUE start on rising edge
//                FALSE start on falling edge
// Outputs:    The number of widths that were measured. If there is
//             no transponder in range, the timeout could occur.
int8 RF_findPattern(int8* widths, int8 numWidths, int8 uncertainty, int1 edge)
{
   RF_readEdge(edge);

   RF_readMode       = RF_FIND_PATTERN;
   RF_patternFound   = FALSE;
   RFbuffer_index    = 0;
   RF_findWidths     = widths;
   dataTransferred   = numWidths;
   RF_uncertainty    = uncertainty;
   timer0_overflows  = 0;
   old_clock         = 0;
   set_timer1(0);

   clear_interrupt(INT_CCP1);
   enable_interrupts(INT_CCP1);
   while(RF_patternFound == FALSE && timer0_overflows < 40);
   disable_interrupts(INT_CCP1);

   return RF_patternFound;
}


// Purpose:       Set every byte in the buffer to data
// Inputs:        None
// Outputs:       None
void RFbuffer_fill(int8 data)
{
   int i;

   for(i=0; i<sizeof(RFbuffer); ++i)
   {
      RFbuffer[i] = data;
   }
}


// Purpose:       Inverts every byte in the buffer
// Inputs:        None
// Outputs:       None
void RFbuffer_invert()
{
   int i;

   for(i=0; i<sizeof(RFbuffer); ++i)
   {
      RFbuffer[i] = ~RFbuffer[i];
   }
}


// Purpose:       Get a bit of data from the buffer and increment to the next bit
// Inputs:        None
// Ouputs:        A bit of data
int1 RFbuffer_getBit()
{
   int1 bit;

   if(!END_OF_RFBUFFER)
   {
      bit = bit_test(RFbuffer[RFbuffer_index], RFbuffer_bitIndex);

      if(++RFbuffer_bitIndex == 8)
      {
         ++RFbuffer_index;
         RFbuffer_bitIndex = 0;
      }
   }

   return bit;
}


// Purpose:       Get a byte of data from the buffer
// Inputs:        None
// Outputs:       The byte of data
int8 RFbuffer_getByte()
{
   if(!END_OF_RFBUFFER)
   {
      int8 i;
      int8 data;

      for(i=0; i<8; ++i)
      {
         shift_right(&data, 1, RFbuffer_getBit());
      }

      return data;
   }
}


// Purpose:       Set the value of the next bit in the buffer
// Inputs:        None
// Outputs:       None
void RFbuffer_setBit(int1 bit)
{
   if(!END_OF_RFBUFFER)
   {
      if(bit)
      {
         bit_set(RFbuffer[RFbuffer_index], RFbuffer_bitIndex);
      }
      else
      {
         bit_clear(RFbuffer[RFbuffer_index], RFbuffer_bitIndex);
      }

      if(++RFbuffer_bitIndex >= 8)
      {
         ++RFbuffer_index;
         RFbuffer_bitIndex = 0;
      }
   }
}

// Purpose:       Set the value of the next byte in the buffer
// Inputs:        None
// Outputs:       None
void RFbuffer_setByte(int8 data)
{
   if(!END_OF_RFBUFFER)
   {
      int8 i;
      for(i=0; i<8; ++i)
      {
         RFbuffer_setBit(bit_test(data, 7));
         rotate_left(&data, 1);
      }
   }
}

#endif